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Abstract

This paper is concerned with the direct calculation of buckling strength of an imperfect structure. The main

assumptions are that, for the perfect structure, there is a symmetric or a linear fundamental path and the
corresponding ®rst critical point is a simple symmetry-breaking or a simple bifurcation point. An extended system
of limit points is proposed for which the newly introduced scaling parameters are regular solution and thus standard

methods can be used to compute them. Using the extended system, one can directly obtain the exact buckling loads
without tracing the postbuckling paths. An e�cient implementation of Newton's method solving the extended
system is presented and numerical examples are given. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The load-bearing capacity of certain structures is highly sensitive to imperfections to which the
geometries and materials are all subjected. Thin shells are the most prominent members of this class of

imperfection-sensitive structures, which also includes certain types of columns, trusses, frames, arches,
and thin-walled structures (Koiter, 1945; Thompson and Hunt, 1973). Small imperfections in these

structures are inevitable and may result in a very signi®cant deterioration of their buckling strength.

Up to now, three approaches have been proposed for the calculation of buckling strength of imperfect

structures. Approach (i) is based on numerically tracking the equilibrium path of an imperfect structure
beyond the point of maximum load (limit point). This can be achieved by a change in the `loading'

parameter (see e.g., Riks, 1979). This method is very useful and also available in most general purpose

nonlinear codes, but it requires a separate analysis for each amplitude and shape of imperfection to be
considered. Also equilibrium paths may have strong curvatures in the vicinity of bifurcation points,

rendering them di�cult to track numerically. Approach (ii) uses the Liapunov±Schmidt decomposition
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together with Koiter's asymptotic expansion about the bifurcation point (see e.g., Casciaro et al., 1992;
Peek and Kheyrkhahan, 1993). The implementations of the approach in ®nite element analysis, however,
involves high order derivatives of the energy functional; also the range of validity of this method is
restricted since such results are often based on the lower-order asymptotic analyses. Approach (iii) is to
perturb the equilibrium and critical state equations simultaneously (see e.g., Thompson and Hunt, 1973;
Godoy et al., 1995; Wu and Wang, 1997). This approach however, has the drawbacks similar to that of
approach (ii).

The direct method has been developed in recent years and is a main tool numerically computing
various kinds of nonlinear singular points (see e.g., Seydel, 1979; Werner and Spence, 1984; Wriggers
and Simo, 1990; Eriksson, 1994; Wu, 1995). The method is based on an extended system which
eliminates the singularity of original problem by introducing properly new equations. The goal of this
paper is to introduce a direct method for calculating the buckling strength of imperfect structures. This
method can allow simultaneous treatment of geometric and material imperfections, determine the limit
point loads and the corresponding displacements exactly without tracking the equilibrium paths of
imperfect structures, permit results to be implemented in a FEM program. The main assumptions are
that, for the perfect structure, there is symmetric or a linear fundamental path and the corresponding
®rst critical point is a simple symmetry-breaking or a simple bifurcation point.

Using the information on the bifurcation point and introducing some new scaling parameters, we
construct an extended system to build a bridge between the bifurcation point of the perfect structure
and the limit point of postbuckling path of the imperfect structure. Here, these scaling parameters have
their origin in the Lyapunov±Schmidt±Koiter approach (see, e.g., Koiter, 1945; Potier-Ferry, 1987;
Triantafyllidis and Peek, 1992) and the perturbation expansion technique (Wu and Wang, 1997). The
solution to the extended system can be regularized by x, the amplitude of projection of incremental
displacement u measured from the fundamental path on the normalized buckling mode u1c of the perfect
structure. By analyzing the stability of the obtained solutions, we can choose the direction of the
continuation parameter x so that the limit point is the maximum value of the load on the corresponding
post-buckling path. Finally, without tracking the equilibrium paths of the imperfect structures, one can
directly ®nd the exact limit loads and the corresponding displacements by continuing x with the
extended system. The implementation of Newton's method solving the extended system is discussed.
Three examples are used to illustrate the validity and applicability of the proposed method.

2. Basic formulae

In this paper, the term `imperfect structure' will be used repeatedly and will denote a more detailed
structural model, which simulates some of all of the unintended deviations of the real structure from the
perfect model. These unintended deviations will be collectively denoted as imperfections. It is
understood that the imperfections have been normalized so that, for zero amplitude of the imperfection
modes, the imperfect structure is reduced to the perfect one.

Consider a discrete imperfect structure. Let the potential energy of the imperfect structure be given by
V�u, l, w� where u denotes the additional displacement of the imperfect structure from its initial
con®guration, l the loading parameter, and w the imperfection of the structure. Let Rn and W denote,
respectively, spaces of displacement and imperfection of the structure. We introduce two inner products
in the two spaces denoted by (u, v ) for u, v 2 Rn and [w1, w2] for wi 2W �i � 1, 2� and the corresponding
norms are kuk � �u, u�1=2 for u 2 Rn and jwj � �w, w�1=2 for w 2W, respectively. It is convenient to
distinguish between the imperfection amplitude e � jwj and the normalized imperfection mode
�u � w=jwj. The equilibrium equation of the imperfect structure is derived by using the stationary
principle:
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Vu�u, l, e �u � � 0: �1�
Throughout the paper, we will use the following notations: various functional (FreÂ chet) derivatives of
the potential energy with respect to u and w are denoted by subscript ( )u and ( )w, respectively, etc.

We consider a critical point of the equilibrium path determined by eqn (1) that governs load-bearing
capacity of the imperfect structure. The critical point is determined by (Thompson and Hunt, 1973;
Budiansky, 1974)

Vuu�u, l, e �u �f � 0 �2�
for some eigenmode f 2 Rn, f 6� 0. Consequently, for a given structural imperfection mode �u , the
corresponding buckling load for the imperfection amplitude e can be found by solving the system of
nonlinear eqns (1) and (2) (in unknowns u, f and l) subject to the condition that the equilibrium
position determined by the solution of eqns (1) and (2) is associated with the maximum value of load on
the corresponding postbuckling path.

We assume that, for the perfect structure, there exists a fundamental equilibrium path u � u0�l� as the
load increases from zero, i.e.

Vu

ÿ
u0�l�, l, 0

�
� 0: �3�

Let l � lc be the buckling load for the perfect structure and it is assumed to be simple with
corresponding buckling mode u1c normalized by ku1ck � 1. In mathematical terms:

Vc
uuu1c � 0 �4�

where superscript c denotes the corresponding derivatives of potential energy function V calculated at
�u, l, w� � �u0�lc�, lc, 0�. We further assume that, when load parameter l passes increasingly through its
critical value lc, the fundamental equilibrium path becomes unstable from stable (Thompson and Hunt,
1973; Budiansky, 1974; E1 Naschie, 1990):

Vc
uulu

2
1c � :

d

dl
Vuu

ÿ
u0�l�, l, 0

�
u21cjl�lc < 0: �5�

We also assume that the e�ect of imperfections is of the ®rst order (Thompson and Hunt, 1973;
Budiansky, 1974; E1 Naschie, 1990; Ikeda and Murota, 1990):

Vc
uwu1c �u 6� 0: �6�

3. Calculation of the buckling strength via extended system

A method for calculating the buckling strength of imperfect structures is introduced in this section.
The method is based on an extended system for which Newton-type algorithms have the quadratic rate
of asymptotic convergence.

3.1. Formulation of extended system

Based on the Lyapunov±Schmidt±Koiter approach (Koiter, 1945; Potier-Ferry, 1987; Triantafyllidis
and Peek, 1992) and the perturbation expansion technique (Wu and Wang, 1997), the displacement ®eld
u, eigenmode f, load parameter l and imperfection amplitude e associated with the limit point of the
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imperfect structure can be written as u � u0�lc � xL� � xu1c � x2v, f � u1c � xc, l � lc � xL, e � x2t
where v and c satisfy �u1c,v� � 0 and �u1c, c� � 0, respectively. We can therefore propose the following
extended system for determining limit point of the imperfect structure:

E�v, c, L, t, x�M

8>><>>:
f1�v, c, L, t, x�
f2�v, c, L, t, x�
�u1c, v�
�u1c, c�

9>>=>>; � 0 �7a�

where

f1M

8>>><>>>:
Vu

ÿ
u0�lc � xL� � xu1c � x2v, lc � xL, x2t �u

�
x2

, if x 6� 0,

Vc
uuv� LVc

uulu1c � tVc
uw �u � 1

2
Vc

uuuu
2
1c, if x � 0,

�7b�

f2M

8>><>>:
Vuu

ÿ
u0�lc � xL� � xu1c � x2v, lc � xL, x2t �u

�
�u1c � xc�

x
, if x 6� 0,

Vc
uuc� LVc

uulu1c � Vc
uuuu

2
1c, if x � 0

�7c�

and

E: Rn � Rn � R� R� R4 Rn � Rn � R� R: �7d�

In eqn (7a), the ®rst formula describes the equilibrium condition, the second formula expresses the
critical condition (limit point) of the equilibrium, while the third and fourth formulas indicate,
respectively, orthogonal conditions resulting from the Liapunov±Schmidt decomposition. By using the
Taylor expansion about x � 0 in the respective numerator in the ®rst and second formulas in eqn (7a),
the equations of the extended system in the case x � 0 can be obtained. For the stable solution of a
nonlinear equation, using the Newton's method, say, it is important that the solution is nonsingular
(Werner and Spence, 1984). The appearance of denominators x2 and x, respectively, in the ®rst and
second formulas in eqn (7a) guarantees that the solutions to system (7) is nonsingular. This will be
proven in the theorem below.

Consider the following system of equations:

E�v, c, L, t, 0� � 0: �8�

It has the solution

�v, c, L, t� � ÿv0, c0, L0, t0
� �9a�

where

v0Mv00 ÿ �u1c, v00�u1c,

c0Mc00 ÿ
ÿ
u1c, c00

�
u1c,
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L0Mÿ Vc
uuuu

3
1c

Vc
uulu

2
1c

,

t0M
Vc

uuuu
3
1c

2Vc
uwu1c �u

�9b�

and v00 and c00 are, respectively, particular solutions to the following equations

Vc
uuv� L0V

c
uulu1c � t0Vc

uw �u � 1

2
Vc

uuuu
2
1c � 0 �10a�

and

Vc
uuc� L0V

c
uulu1c � Vc

uuuu
2
1c � 0: �10b�

Theorem. Let potential energy function V�u, l, e �u � satisfy conditions (3)±(6). Then, for x � 0, extended
system (7) has a solution �v0, c0, L0, t0� and its linearization with respect to �v, c, L, t�, at this solution,
is non-singular.

Proof. Based on conditions (3) and (4), the homogeneous system associated with the linearization of
extended system (7) with respect to �v, c, L, t� at x � 0 has the form

Vc
uudv� dLVc

uulu1c � dtVc
uw �u � 0, �11a�

Vc
uudc� dLVc

uulu1c � 0, �11b�

�u1c, dv� � 0, �11c�

�u1c, dc� � 0: �11d�

Taking inner product with u1c in the two sides of eqns (11a) and (11b), respectively, and using eqn (4),
one achieves

dLVc
uulu

2
1c � dtVc

uwu1c �u � 0, dLVc
uulu

2
1c � 0: �12�

Under conditions (5) and (6), one derives dL � dt � 0.
Substituting dL � dt � 0 into eqns (11a) and (11b), respectively, one has

Vc
uudv � 0, Vc

uudc � 0 �13�
and their solutions are given by

dv � c1u1c, dc � c2u1c �14�
where c1 and c2 are some real constants. Substitution of (14) into eqns (11c, d) leads to c1 � c2 � 0,
hence
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dv � 0, dc � 0:

This completes the proof.
We can draw important conclusions from the Theorem.

Corollary. Let the conditions of the Theorem be satis®ed. Then there exists a locally smooth solution
branch �v�x�, c�x�, L�x�, t�x�� 2 Rn � Rn � R� R of E�v, c, L, t, x� � 0 such that v�0� � v0, c�0� �
c0, L�0� � L0 and t�0� � t0, and for x 6� 0, lsMlc � xL�x� is the buckling load for the imperfection
amplitude x2t�x� when xL�x� < 0.

Proof. The existence of local smooth solutions �v�x�, c�x�, L�x�, t�x�� satisfying the initial conditions
follows from the regularity of the Jacobian of system E � 0 [eqn (7)] with respect to �v, c, L, t� at
x � 0.

On the other hand, for x 6� 0, from eqns (7a±c) one derives

Vu�u0�lc � xL�x�� � xu1c � x2v�x�, lc � xL�x�, x2t�x� �u � � 0,

Vuu�u0�lc � xL�x�� � xu1c � x2v�x�, lc � xL�x�, x2t�x� �u��u1c � xc�x�� � 0: �15�
Hence, for a given imperfection mode �u , �u, f, l� � �u0�lc � xL�x�� � xu1c � x2v�x�, u1c � xc�x�, lc �
xL�x�� corresponds to a solution to the system of eqns (1) and (2) for the imperfection amplitude
e � x2t�x�. By using the conclusion of stability analysis in Wu and Wang (1997), we know that, only if
xL�x� < 0, ls � lc � xL�x� is the buckling load (the maximum value of load) and the corresponding
displacement usMu0�lc � xL�x�� � xu1c � x2v�x�. The proof is completed.

Note that our extended system (7) applies to both of asymmetric and symmetric bifurcation points.
This is due to the nonsingularity of the solution to E�v, c, L, t, 0� � 0 has no relation with the
classi®cation of simple bifurcation points. Concerning the items to be implemented in the classi®cation,
they depend on problems considered, we refer readers to Casciaro et al. (1992). These implementations
need not to be completed in our numerical method. This point will be explained in Section 3.3.

3.2. Procedure in calculations

Now we can propose a procedure for the calculation of the buckling strength of imperfect structures:

1. Determine the buckling load l � lc and buckling mode u1c (normalized by ku1ck � 1) of the
corresponding perfect structure.

2. Extended system (7) (i.e. E � 0) can then be used to obtain the buckling load lc � xL�x� and
corresponding displacement u0�lc � xL�x�� � xu1c � x2v�x� for the imperfection amplitude x2t�x� by
continuing x from x � 0 along the direction of x satisfying xL�x� < 0.

Remark. The regularity of �v, c, L, t� � �v0, c0, L0, t0� as the solution to extended system (7) for x � 0
guarantees our approach in step 2 can succeed.

If the perfect structure has a linear fundamental path, u0�l�Mluf is easily obtained by solving a linear
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system with unknown uf. Furthermore lc and u1c can be achieved by solving an eigenvalue problem
(Casciaro et al., 1992; Godoy et al., 1995)

K�l�u � 0, �u, u� � 1 �16�
where K�l� is the tangent sti�ness matrix along the linear fundamental path and (u, u ) = 1 describes
the normalized conditions for the buckling mode. An iteration algorithm for the solution to system (16)
has been discussed (Casciaro et al., 1992). An alternative algorithm to obtain lc and u1c is to apply the
Newton's method to system (16). The implementation of solving the system is similar to that discussed
in Section 3.3. After the buckling load and corresponding buckling mode are achieved, extended system
(7) can be directly applied to get the buckling strength of imperfect structures. The implementation of
solving the system in similar to that of a symmetric fundamental path which will later be described in
detail in Section 3.3.

We next discuss the case that the perfect structure has a symmetric fundamental path. Let g4 Tg is a
unitary representation of a group G on the space Rn, such that V�u, l, 0� is invariant under G in the
sense that

V
ÿ
Tgu, l, 0

� � V�u, l, 0�, 8g 2 G, 8u 2 Rn: �17�

Then it can be shown that Vu�u, l, 0� is covariant under G in the sense that (Troger and Steindl, 1991)

TgVu�u, l, 0� � Vu
ÿ
Tgu, l, 0

�
, 8g 2 G, 8u 2 Rn: �18�

Let U0 be an invariant subspace of Rn in the sense

U0 �
�
u 2 RnjTgu � u, 8g 2 G

	
: �19�

A symmetric fundamental path u0�l� means

u0�l� 2 U0, 8le0: �20�
Suppose that the ®rst critical point on the symmetric fundamental path is a simple symmetry-breaking
bifurcation point (u1c =2 U0). Then lc, ucMu0�lc� and u1c can be obtained by solving a corresponding
extended system given by Werner and Spence (1984) or Werner (1984).

3.3. Implementation of solving the extended system

In the case that the perfect structure has a symmetric fundamental path, we discuss the
implementation of solving extended system (7). For this case, extended system (7) can be transformed to
a more available form:

G�u, v, c, L, t, x�M

8>>>><>>>>:
Vu�u, lc � xL, 0�
g1�u, v, c, L, t, x�
g2�u, v, c, L, t, x�

�u1c, v�
�u1c, c�

9>>>>=>>>>; � 0 �21a�

where

g1M
Vu

ÿ
u� xu1c � x2v, lc � xL, x2t �u

�
x2

, �21b�
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g2M
Vuu

ÿ
u� xu1c � x2v, lc � xL, x2t �u

�
�u1c � xc�

x
�21c�

and

G: U0 � Rn � Rn � R� R� R4 U0 � Rn � Rn � R� R: �21d�
Set n0 � dim U0. In general, it will be easily to identify U0 with Rn0 using the isomorphism
I0 : U0 4 Rn0 , I0�u� � us. Then extended system (21) becomes

H
ÿ
us, v, c, L, t, x

�
M

8>>>>>>>>><>>>>>>>>>:

I0Vu

ÿ
Iÿ10 us, lc � xL, 0

�
g1
ÿ
Iÿ10 us, v, c, L, t, x

�
g2
ÿ
Iÿ10 us, v, c, L, t, x

�
�u1c, v�
�u1c, c�

9>>>>>>>>>=>>>>>>>>>;
� 0 �22a�

where

H: Rn0 � Rn � Rn � R� R� R4 Rn0 � Rn � Rn � R� R: �22b�
System (22) can be solved by Newton's method. In the continuation with respect to x, for a given
�us, v, c, L, t� the Newton corrections dus, dv, dc, dL, dt satisfy the linear (n0 � 2n� 2) system:

asdus � bsdL � rs, �23�

Bsdus � Adv� cdL� ddt � r1, �24�

Csdus �Ddv� Adc� edL� fdt � r2, �25�

�u1c, dv� � ÿ�u1c, v�, �26�

�u1c, dc� � ÿ�u1c, c�, �27�
where

Vs
u � Vu

ÿ
Iÿ10 us, lc � xL, 0

�
,

Vt
u � Vu

�
Iÿ10 us � xu1c � x2v, lc � xL, x2t �u

�
, etc:,

as � I0V
s
uuI
ÿ1
0 , bs � I0V

s
ulx, rs � ÿI0Vs

u,

Bs � Vt
uuI
ÿ1
0

x2
, A � Vt

uu, c � Vt
ul

x
, d � Vt

uw �u , r1 � ÿV
t
u

x2
,
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Cs � Vt
uuu�u1c � xc�Iÿ10

x
, D � xVt

uuu�u1c � xc�, e � Vt
uul�u1c � xc�,

f � xVt
uuw�u1c � xc� �u , r2 � ÿV

t
uu�u1c � xc�

x
: �28�

In the practical realization one can take advantage of a partitioning technique (see, e.g., Werner and
Spence, 1984; Riks et al., 1990).

Compute zi, ci, r2�i, vi, ti, i � 1, 2, h, r5, dc, dL, dv, dt and dus in

asz1 � ÿbs, asz2 � rs, �29�

c1 � c� Bsz1, r3 � r1 ÿ Bsz2, c2 � e� Csz1, r4 � r2 ÿ Csz2, �30�
 

A d

uT
1c 0

! 
v1

t1

!
� ÿ

 
c1

0

!
,

 
A d

uT
1c 0

! 
v2

t2

!
�
 

r3

ÿ�u1c, v�

!
, �31�

h � c2 �Dv1 � t1f, r5 � r4 ÿDv2 ÿ t2f, �32�
 

A h

uT
1c 0

! 
dc

dL

!
�
 

r5

ÿ�u1c, c�

!
, �33�

dv � v1dL� v2, dt � t1dL� t2, dus � z1dL� z2: �34�
Direct solution of systems (31) and (33) with Gaussian elimination might require full pivoting strategy in
order to avoid severe accumulation of roundo� errors. However, full pivoting destroys the bordered
structure of the coe�cient matrix. Let j be the largest component in u1c. Both of the two systems can be
solved by decomposing the same substi�ness matrix �A of order nÿ 1 which is obtained by deleting the
jth row and the jth column from A. We refer readers to Riks et al. (1990). Thus each Newton step
requires the solutions of systems of equations with only the two coe�cient matrices as and �A .

In solving system (22), we never use x � 0 so that even when applying Newton's method, the solution
(I0u

c, v0, c0, L0, t0) to system H�us, v, c, L, t, 0� � 0 (especially item Vc
uuuu

2
1c) needs not be computed. In

the ®rst continuation step starting from x � 0, we can choose �us, v, c, L, t� � �I0uc, 0, 0, 0, 0� as the
initial value. In addition, the directional derivatives of the tangent sti�ness matrix in the computation
can be approximated by di�erence quotient (Wriggers and Simo, 1990).

4. Numerical examples

In this section, we present three examples to demonstrate the e�ciency and applicability of the
proposed method.

Example 4.1. Ziegler's two-degree-of-freedom cantilevered model.

The model shown in Fig. 1 consists of two rigid weightless links of equal length l, interconnected with
each other and being supported by frictionless hinges and corresponding nonlinlearly elastic rotational
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springs of quadratic type. The unstressed con®guration is speci®ed by the initial geometric imperfections
e1 and e2. The model at its top end is subjected to a vertical load P.

The nondimensional total potential energy of the system is given by

V�y1, y2, l, e1, e2� � 1

2
y21 �

1

3
d1y

3
1 �

1

2
�y2 ÿ y1�2 � 1

3
d2�y2 ÿ y1 �3

ÿ l
�
cos e1 ÿ cos �y1 � e1� � cos e2 ÿ cos �y2 � e2 �

� �35�

where y1 and y2 are the incremental angles of deformation of the system (uM�y1, y2�t), k is the linear
spring component common for both springs and di�i � 1, 2� are the nonlinear components of the
corresponding quadratic springs, di > 0� < 0� express the corresponding spring is of hard (soft) type,
lMPl=k. Let the imperfection vector

w � �e1, e2�t� e �u , �uM�a, b�t, a2 � b2 � 1: �36�

Eqns (1) and (2) for the model become

y1 � d1y
2
1 ÿ y2 � y1 ÿ d2�y2 ÿ y1�2ÿl sin �y1 � e1 � � 0, y2 ÿ y1 � d2�y2 ÿ y1 �2ÿl sin �y2 � e2� � 0 �37�

and �
2� 2d1y1 ÿ 2d2�y1 ÿ y2� ÿ l cos �y1 � e1�

�
f1 ÿ

�
1� 2d2�y2 ÿ y1�

�
f2 � 0,

ÿ�1� 2d2�y2 ÿ y1�
�
f1 �

�
1� 2d2�y2 ÿ y1� ÿ l cos �y2 � e2�

�
f2 � 0 �38�

where f � �f1, f2�t.
In the following numerical computations, we take d1 � ÿ2:5, d2 � ÿ0:75. At the ®rst bifurcation point

of the perfect model, the buckling load lc � 0:38197 and corresponding buckling mode u1c � �y1c, y2c�t

Fig. 1. Ziegler's cantilevered model subject to vertical load.

B. Wu / International Journal of Solids and Structures 37 (2000) 1561±15761570



� �0:52573, 0:85065�t. This is an asymmetric bifurcation point. Letting �y1, y2�t � x�y1c, y2c�t
� x2�v1, v2�t, l � lc � xL, �e1, e2�t � x2t�a, b�t, f � �y1c, y2c�t � x�c1, c2�t and de®ning the inner product
�u, v� � u1v1 � u2v2, we can obtain extended system (7) for the present problem. By using the
continuation method described in Section 3, we can determine v�x�, c�x�, L�x� and t�x� from the
extended system. The numerical results (exact) for (a, b ) = (ÿ0.707, 0.707) is plotted in Fig. 2. For
comparison, the asymptotic solution [up to O�e�] based on Wu and Wang (1997) is also shown.

Fig. 2. Dependence of the buckling load on the imperfection amplitude for the imperfection mode (ÿ0.707, 0.707).

Fig. 3. Two-bar non-shallow arch under a vertical load.
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Example 4.2. A two-bar non-shallow arch subjected to vertical load at top node.

This model (see Fig. 3) is investigated by Ikeda and Murota (1990) for determining the critical
imperfection of the arch. The nondimensional potential energy of the arch is given by

V�u, l, �u � � 1

2
a1

 
l̂1 ÿ l1
l1

!2

�1
2
a2

 
l̂2 ÿ l2
l2

!2

ÿly �39a�

where

u � �x, y�t, l � P

EA
,

w � �Dx1, Dy1, Dx2, Dy2, Dx3, Dy3, Da1, Da2�t,

�x1, y1, x2, y2, x3, y3, a1, a2�t� � ÿ 1, 3, 1, 3, 0, 0, 1, 1�t � w,

li �
�
�x3 ÿ xi �2 � �y3 ÿ yi �2

	1=2
,

l̂i �
�
�x� x3 ÿ xi �2 � �y� y3 ÿ yi �2

	1=2
, i � 1, 2: �39b�

The imperfection vector w is written as

Fig. 4. Dependence of the buckling load on the imperfection amplitude for the critical imperfection mode.
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w � ed,
X8
i�1

d2
i � 1: �40�

It is easy to check that, for the perfect structure, there exists invariant subspace U0Mf�0, y�t, y 2 Rg of
R2; in addition, it has no trivial symmetric fundamental path. Using the method described in Section
3.2, we get the buckling load lc � 0:24776 and corresponding buckling mode u1c � �x1c, y1c�t � �0, 1�t of
the perfect model. This is a symmetric bifurcation point. Using the method described in Sections 3.2 and
3.3, we obtain the load drop (exact) vs imperfection amplitude curve (Fig. 4) for the critical imperfection
mode (Ikeda and Murota, 1990)

d � � ÿ 0:28404, ÿ 0:26061, ÿ 0:28404, 0:26061, 0:56812, 0, 0:43592, ÿ 0:43592�t: �41�
The asymptotic solution [up to O�e�] derived from Wu and Wang (1997) is also shown for comparison.

Example 4.3. A simply supported beam on a nonlinear softening elastic foundation subjected to axial
load (Fig. 5).

The nondimensional potential energy of the beam is given by (Potier-Ferry, 1987):

F�u, l, w� �
�l
0

�
1

2
u 002 ÿ 1

2
lu 02 � 1

2
u2 ÿ 1

4
u4 ÿ lw 0u 0

�
dx �42�

where u, w, l, and l are, respectively, nondimensional incremental lateral displacement, initial geometric
imperfection and length of the beam, and axial load. For illustration, we take l � p in the following
discussions. The beam is assumed to be simply supported.

We choose a uniform mesh size, h � p=�N� 1�, N: integer, and nodes xi � ih, i � 1, 2, . . . , N. Starting
from (42) and using di�erence-variation (evaluate the integral with trapezoid formula and use central
di�erence quotient approximations to u 00 and u 0) discretization to it leads to the corresponding ®nite-
dimensional potential energy function V:

V�u, l, w� � 1

2
h
XN
1

�
uiÿ1 ÿ 2ui � uiÿ1

h2

�2

ÿ1
2
hl

"
1

2

u21
h2
�
XN
1

�
ui�1 ÿ uiÿ1

2h

�2

�1
2

u2N
h2

#
� h

2

 XN
1

u2i

!

ÿ h

4

 XN
1

u4i

!
ÿ lh

"
1

2

w1

h

u1
h
�
XN
1

�
wi�1 ÿ wiÿ1

2h

��
ui�1 ÿ uiÿ1

2h

�
� 1

2

wN

h

uN
h

#
�43�

Fig. 5. A beam on a softening elastic foundation under axial compression load.
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where u1 � uN�1 � w1 � wN�1 � 0, u � �u1, u2, . . . , uN�T and w � �w1, w2, . . . , wN�T are, respectively, the
column vectors of the nodes of the incremental lateral displacement and initial geometric imperfection. In
the above ®nite-dimensional system, we de®ne the inner product of u and v as follows:

�u, v� � h

 XN
1

uivi

!
: �44�

Let N � 40. At the ®rst bifurcation point of the corresponding perfect beam (with the fundamental path
u0�l� � 0), lc � 2:002939, and the buckling mode u1c is normalized according to the norm ku1ck � 1 and
its expression is omitted. This is also a symmetric bifurcation point. In the computation of the buckling
strength, we consider the initial geometric imperfection which has the shape of classical buckling mode
u1c, and let the imperfection

w � eu1c �45�

Based on the method of Section 3, the dependence of the buckling load ls (exact) on the maximum
amplitude umax

0 �Meumax
1c where umax

1c is the largest component in the normalized buckling mode u1c) of
initial geometric imperfection is shown in Fig. 6. For comparision, the asymptotic solution [up to O�e�]
based on Wu and Wang (1997) is also shown.

From Figs. 2, 4 and 6, one ®nds that, based on the proposed direct method, the exact buckling load
for su�ciently large imperfection amplitude can be achieved. Furthermore, it is evident that the
asymptotic analysis is a reasonable approximation only for small range of the imperfection amplitude.

Fig. 6. Dependence of the buckling load on the maximum initial geometric imperfection amplitude.
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5. Conclusions

An extended system method for determining the buckling strength of imperfect structures has been
introduced, under the assumptions of a symmetric or a linear fundamental path and existence of a
simple symmetry-breaking or a simple bifurcation point. The solution to the extended system can be
regularized by x, the amplitude of projection of incremental displacement u from the fundamental path
on the normalized buckling mode u1c of the perfect structure. Thus, standard methods can be used to
directly compute the buckling load of imperfect structures by continuing x with the extended system.
The implementation of Newton's method solving the extended systemÐa partitioning procedure has
also been given.

This method can allow simultaneous treatment of geometric and material imperfections, determine the
exact limit point load and corresponding displacement without tracking the equilibrium paths of the
imperfect structures, permit results to be implemented in a FEM program. The three numerical
examples have shown that one can get the exact buckling load for su�ciently large imperfection
amplitude and the algorithm has good convergence.
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